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A B S T R A C T   

The increasing accessibility to digital traces of human whereabouts in cities has offered numerous new oppor-
tunities for exploring patterns of human mobility in urban spaces. Prior research pointed out that there exist two 
distinct subpopulations in cities, namely returners and explorers, whose mobility patterns differ in the extent to 
which their characteristic traveled distance is impacted by their recurrent mobility. However, the potential 
dependence of the returners and explorers dichotomy on the observation duration has been largely ignored in 
prior research, which may cause biased understanding of the returners and explorers dichotomy in urban 
mobility patterns. By analyzing the daily trajectory data of 21,240 individuals in Guangzhou over 111 weekdays, 
this study evidenced that the returners and explorers dichotomy is significantly dependent on the duration within 
which individuals’ trajectories are observed. This study further revealed that such dependence could be inter-
preted by three underlying explanations, which are respectively related to information accumulation, in-
dividuals’ spatial exploration behaviors and changes in individuals’ important locations. The findings provide 
fundamental knowledge for studying urban human mobility patterns for disease prediction, population behav-
ioral modeling, and understanding dynamic human-environment interactions at urban scales.   

1. Introduction 

The increasing accessibility to digital traces of human whereabouts 
in cities, made available by recent advancements of mobile and ubiq-
uitous computing technologies, has offered numerous new opportunities 
for exploring patterns and applications of urban human mobility. The 
amount of literature on human mobility has increased exponentially 
over recent years. One remarkable phenomenon that was repeatedly 
reported in prior research is that there is a surprising coexistence of 
variability and regularity in individuals’ mobility characteristics. For 
instance, while individuals’ daily mobility ranges are highly diverse, 
most of them repeat certain daily activities, such as commuting between 
home and workplace and socializing with friends, which are dominated 
by routines. Motivated to explain this coexistence of variability and 
regularity, Pappalardo et al. (2015) analyzed two trajectory datasets, 
and identified two distinct classes of individuals, whom they referred to 
as returners and explorers. The mobility patterns of returners and 

explorers differ in the extent to which their characteristic traveled dis-
tance, which is usually measured by the radius of gyration (Pappalardo 
et al., 2015), is impacted by their recurrent mobility, i.e. mobility be-
tween a few important locations such as home and working places 
(Song, Qu, Blumm, & Barabási, 2010). This dichotomous classification 
of the population sheds light on how individuals’ mobility patterns are 
affected by their personal preferences to return to previously visited 
locations or explore new locations (De Nadai, Cardoso, Lima, Lepri, & 
Oliver, 2019). Moreover, the returners and explorers dichotomy has 
inspired a bulk of research that examines a spectrum of relevant topics 
ranging from urban population’s job and housing dynamics (Huang, 
Levinson, Wang, Zhou, & Wang, 2018; Zhou & Long, 2014) to correla-
tion between social and spatial behaviors (Alessandretti, Lehmann, & 
Baronchelli, 2018; Fan, Liu, Huang, Rong, & Zhou, 2017), and human 
mobility in cyber-physical spaces (De Nadai et al., 2019). 

One factor, however, that may have a significant impact on the 
reliability of the returns and explorers dichotomy, but was originally 
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unaddressed in Pappalardo et al.’s study (2015), is the potential 
dependence of the returners and explorers dichotomy on the observation 
duration namely the length of the time window during which the in-
dividuals’ mobility behaviors are observed and recorded. The two 
datasets used by Pappalardo et al. (2015) contained call records 
collected over three months and vehicle GPS data collected over one 
month, respectively. Both datasets were processed, analyzed and inter-
preted identically, with an implicit assumption that the returns and 
explorers dichotomy is not dependent on the observation duration. 

However, the above assumption has yet to be tested. Knowing the 
validity of this assumption is critical, the reason for which is twofold. 
First, it determines whether the observation duration is an important 
variable that should be considered in various applications of the 
returner-explorer dichotomy. One recent example of such applications 
being that, considering the distinct trajectory diffusion properties of 
returners and explorers, populations with higher proportions of ex-
plorers tend to have higher chances to be globally invaded by epidemics 
(Shoghri, Liebig, Gardner, Jurdak, & Kanhere, 2019). Therefore, 
depicting the returners and explorers’ pattern is crucial for forecasting 
the transmission of diseases and developing epidemic control measures 
(Balcan & Vespignani, 2011), for which the health authorities may need 
to know whether and how they should factor in the impact of observa-
tion duration. Second, the above implicit assumption has been carried 
on by many follow-up studies (Barbosa, de Lima-Neto, Evsukoff, & 
Menezes, 2016; De Nadai et al., 2019; Fan et al., 2017). This highlights 
the importance of testing this assumption, so as to strengthen the 
theoretical basis of human mobility knowledge derived from these 
follow-up studies as well as future studies that aim to look into relevant 
subjects. 

As a matter of fact, there exist at least the following three reasons to 
hypothesize that the above assumption may not always be true, and that 
the returners and explorers dichotomy may be dependent on the 
observation duration. First, it is evident that individuals’ mobility pat-
terns usually differ between short-term and long-term (Schneider, Belik, 
Couronné, Smoreda, & González, 2013). For instance, the phenomenon 
that most individuals’ daily mobility networks can be described with 17 
different motifs (Schneider et al., 2013) is only observable at a daily 
scale, whereas the distributions of the number of visited location (Song, 
Qu et al., 2010) and the radius of gyration (Gonzalez, Hidalgo, & Bar-
abasi, 2008) show significant statistical characteristics only in long-term 
observations that usually span over a few months. It is hence possible 
that datasets collected over short and long periods may not necessarily 
lead to consistent conclusions regarding the returners and explorers 
dichotomy. Second, a prior study (Stanley, Yoo, Paul, & Bell, 2018) 
revealed that increasing the amount of mobility data can provide in-
cremental information gains for capturing individuals’ spatial behavior, 
until the observation duration reaches a cut-off value. This finding 
suggests that the precision of human mobility characterization may not 
be assured when the amount of mobility data is insufficient, while the 
data amount is closely tied to the observation duration. Third, Pappa-
lardo et al. (2015) observed that there was no balance point of the re-
turners and explorers dichotomy using the GPS dataset in the same study 
in which they proposed the returners and explorers dichotomy. They 
could not find any k value where the population would reach a balance 
between k -returns and k -explorers, as there were always more k -ex-
plorers than k -returners. This contradicted the outcomes from their 
dataset of mobile phone geolocations, suggesting an inherent hetero-
geneity between the two datasets that could impact their classification 
results. The observation duration, among other possible factors, is highly 
susceptible. 

The possibility that the validity of existing knowledge about urban 
human mobility that prior studies have derived based on the returners 
and explorers dichotomy may be brought into question, due to the po-
tential dependence of the dichotomy on the observation duration, is the 
primary motivation of this study. What further motivates this study is 
the prospect to advance the understanding of distinctions between 

individuals’ mobility in the short term and the long term, which may 
have significant implications for transferring the knowledge about 
urban human mobility into smart and resilient city applications. This 
study aims to answer two specific research questions: (1) Are returner- 
explorer classifications dependent on the study duration within which 
individuals’ trajectories are observed? If so, does the observation 
duration-dependence of classification results change over time, and 
how? (2) What are the underlying explanations behind the observation 
duration-dependence of the returners and explorers dichotomy? 

A mobility dataset collected in Guangzhou, China was employed in 
this study to explore these questions. The dataset contained daily tra-
jectories of 21,240 individuals in the city over five and a half months. 
The returner-explorer classification was conducted on different obser-
vation durations in the above dataset. The resulting classification results 
were compared to assess the potential observation duration-dependence 
of the returners and explorers dichotomy at both the population and the 
individual levels. Moreover, three possible explanations were analyzed 
to explain the observation duration-dependence of the returners and 
explorers dichotomy. The findings are expected to offer new insights 
into human urban mobility behavior modeling and prediction by 
providing a dynamic and temporal perspective, which would in turn 
enhance the intelligence and resilience in cities and support more 
informed urban development practices. 

2. Background 

2.1. Urban human mobility patterns and implications for smart and 
resilient cities 

The emerging knowledge about urban human travel behaviors and 
mobility patterns, made available by mining human trajectory data, 
provides important insights into the relationship between urban envi-
ronments and human activities, which have profound implications for 
improving the intelligence and resilience of modern cities. 

Knowledge about urban human mobility patterns is valuable for a 
wide range of smart city applications (Bibri & Krogstie, 2017; Lopez--
Carreiro & Monzon, 2018; Peprah, Amponsah, & Oduro, 2019). For 
instance, an array of studies have used individuals’ trajectories to 
determine people’s travel modes (Shin et al., 2015), model travel routes 
(Jiang et al., 2016), and forecast travel demands (Wang, Yang, Sun, & 
Gao, 2017). The outcomes have important implications for urban road 
network planning (Tsiotas & Polyzos, 2017) and traffic congestion 
management (Qian, Lei, Xue, Lei, & Ukkusuri, 2020). These studies have 
also inspired innovative solutions to various urban challenges such as 
transport policy making, public resources planning, and urban land use 
planning (Forghani & Karimipour, 2018; Zhang, Liu, Tang, Cheng, & 
Wang, 2019). 

Understanding urban human mobility patterns also informs building 
resilience of cities and their infrastructures (Nogal & Honfi, 2019). 
There is a growing body of literature aimed at reducing disaster risk and 
enhancing resilience of cities and communities by understanding and 
predicting human mobility. For instance, disaster-induced perturbations 
to human mobility are investigated widely (Wang & Taylor, 2014; 
Wang, Wang, & Taylor, 2017), in order to inform governments and 
policymakers to improve disaster risk assessments, responses and relief 
plans (Guadagno, 2016). Human movements under disasters are 
modeled and predicted (Solmaz & Turgut, 2017; Song et al., 2016), 
which can be used to support disaster evacuation planning (Zamichos, 
Theodorou, Drosou, & Tzovaras, 2018) and emergency shelter site se-
lection (Tai, Lee, & Lin, 2010). Tracking human mobility perturbations 
has also been widely considered as a novel and effective approach for 
assessing the resilience of urban infrastructures (Nogal & Honfi, 2019; 
Saja, Teo, Goonetilleke, Ziyath, & Nianthi, 2020; Zhang, Li et al., 2019), 
leading to better understanding of the strengths and vulnerabilities of 
the infrastructures against disaster impacts. 

In sum, prior studies have demonstrated the broad applications and 
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significant values of incorporating the urban human mobility knowledge 
to support the development of smart and resilient cities. However, one 
issue that is potentially impactful on the use of human mobility 
knowledge in urban studies but has drawn little attention thus far is the 
temporal characteristics of human mobility patterns. There is abundant 
evidence indicating that individuals’ mobility patterns usually differ 
between short term and long term (Schneider et al., 2013), and may be 
dependent on the temporal duration within which the mobility is 
observed (Stanley et al., 2018). In reality, different applications of 
human mobility knowledge are associated with different timespans. For 
instance, travel demand forecast (Wang, Yang et al., 2017) and urban 
hotspots detection (Yang, Zhao, & Lu, 2016) usually require day-to-day 
mobility patterns, whereas urban social dynamics analysis and predic-
tion (Liu, Qiao, Tao, Lin, & Yang, 2017) and epidemics modeling and 
prediction (Xu et al., 2017) are based on mobility patterns that are only 
significant in long-term observations that usually span over a few 
months. It is not uncommon to see mismatches between mobility data-
sets or human mobility findings over different temporal scales and their 
real-world applications. The impact of such mismatches on the usability 
of human mobility knowledge in addressing challenges in smart and 
resilient cities has largely remained to be examined. 

2.2. Returners and explorers dichotomy in urban human mobility 

Based on the demonstration of the truncated power law of trip dis-
tance distribution, Gonzalez et al. (2008) posited that people have the 
tendency to return to primary locations. Song, Qu et al. (2010) used 
mobility networks to represent trajectories of mobile phone users, and 
found that people tended to spend most of their time at a few important 
locations, which suggested a recurrent nature of human mobility. 
Furthermore, considering the high probability for individuals to return 
to a few important locations, Song, Koren, Wang, and Barabási (2010) 
proposed two generative mechanisms, namely exploration and prefer-
ential return (EPR), to capture two different tendencies of individuals, 
either to return to previously visited locations or to explore new loca-
tions. This formed the basis of the widely referenced EPR human 
mobility model. In addition, by integrating additional movement 
choice-making mechanism, several variants of the EPR model were 
introduced in later studies and achieved improved approximations of 
empirical human mobility data. For instance, Jiang et al. (2016) pro-
posed the r-EPR model, which is a rank-based exploration and prefer-
ential return model that incorporates a ranking-based selection method 
for spatial choices when exploring new locations. Similarly, based on the 
exploration-exploitation dichotomy of individual’ movement choices, 
Barbosa, de Lima-Neto, Evsukoff, and Menezes (2015) proposed the 
recency model, which considers both recently visited locations and 
frequently visited locations in movement decisions. 

The research on the exploration and preferential return mechanisms 
also inspired Pappalardo et al. (2015) to propose the returners and ex-
plorers dichotomy, which posits that there exist two classes of in-
dividuals in any given population, namely returners and explorers. 
These two classes of individuals have distinct mobility patterns: re-
turners are people who spend most of their time at a few frequently 
visited locations, therefore, the overall mobility of returners is largely 
determined by their recurrent mobility; whilst explorers are those who 
have a strong tendency to explore new locations, so that frequently 
visited locations extracted from explorers’ mobility histories have little 
contribution to their overall mobility. The radius of gyration, which 
characterizes an individual’s tendency to deviate from the center of his 
or her own movements, has been widely used to quantify the spatial 
range of the individual’s trajectories. Adapted from the definition of 
radius of gyration, the k -radii of gyration was introduced by Pappalardo 
et al. (2015) to represent the individual’s mobility range restricted to the 
top k frequently visited locations. Then, an individual can be determined 
as either returner or explorer, by calculating the contribution of his or 
her recurrent mobility between top k frequently visited locations to his 

or her overall mobility. 
The classification of returners and explorers has been adopted and 

found useful in various applications. For instance, Pappalardo et al. 
(2015) revealed that these two classes of individuals play distinct roles 
in epidemic spreading. The chances that an epidemic would invade 
globally increases with the fraction of explorers in the population. By 
considering geographical characteristics, Liao, Yeh, and Jeuken (2019) 
expanded the dichotomy and classified a population into four distinct 
groups, including local explorers, local returners, global explorers and 
global returners, of travelers, which led to better understanding of the 
population heterogeneity in travel behaviors. Individuals in the local 
groups usually visit nearby locations while individuals in the global 
groups have high proportions of international trips. Moreover, a number 
of studies found that, for individuals belonging to the same dichotomous 
class, their spatiotemporal dynamics exhibit highly similar scaling 
properties in various aspects. For instance, Fan et al. (2017) found that 
the social proximity and mobility similarity between individuals in the 
same class are significantly higher than those between individuals in 
different subpopulations. This echoed Pappalardo et al.’s study (2015), 
which reported that individuals are more likely to construct social ties 
with those in the same class. In addition, Liao et al. (2019) found that the 
behaviors of exploration and return are correlated in both social and 
spatial domains. The apparent correlation between human behaviors in 
physical space and cyber space indicates that there also exist two distinct 
classes, namely returners and explorers, with respect to mobile appli-
cation usage (De Nadai et al., 2019) and web browsing (Barbosa et al., 
2016). 

In sum, the returner-explorer classification has been widely used to 
reflect individuals’ behavioral patterns. In prior studies, the classifica-
tion of a population into returners and explorers was conducted on 
datasets with different durations. The potential observation duration- 
dependence of the returners and explorers dichotomy was largely 
ignored, which could lead to biased interpretation of observed mobility 
patterns and inaccurate understanding of the distinction between in-
dividuals’ mobility in the short term and the long term. Therefore, there 
is an urgent need to investigate the significance of the potential obser-
vation duration-dependence of the returners and explorers dichotomy, 
and reveal the underlying explanations of such dependence, in order to 
better explain the mobility patterns extracted from human traces and 
enhance the validity of related findings. 

3. Data and methods 

3.1. Data collection and preprocessing 

This study uses anonymized geolocation data collected from mobile 
devices used by individuals within the City of Guangzhou in Guangdong 
Province, China. The dataset includes 98,652 distinct individuals and 
covers 167 days from May 1 to October 15 in 2018. Trajectories in the 
dataset include a total of 453 million geolocations. These geolocations 
were preprocessed before analyses as follows: First, only individuals 
whose observed trajectories covered at least 20 days in each month and 
five hours each day were included, and trajectories of individuals that 
did not meet the requirement were removed. This preprocessing step 
was conducted to exclude temporary visitors and ensured that the data 
for all individuals included in the study were adequate and properly 
distributed. As such, trajectories of 78 % of individuals were removed 
from the original dataset; Second, trajectories collected over weekends 
and holidays, accounting for 32.64 % of the remaining geolocations in 
the dataset, were also excluded, because this study focuses on in-
dividuals’ mobility on weekdays, which is more regular than mobility on 
weekends and is usually studied separately from mobility on weekends 
(Feng, Wang, Kong, Wang, & Liu, 2018; Zhang, Liu et al., 2019); Third, 
trajectories on Monday, September 17, 2018, which accounted for 0.84 
% of the remaining geolocations in the dataset, were also excluded, as 
the city was under the impact of Typhoon Mangkhut on that day, and 
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mobility in the city may have been perturbed by the extreme weather 
(Brum-Bastos, Long, & Demšar, 2018; Wang, Wang et al., 2017). 

The preprocessed dataset includes the trajectories of 21,240 distinct 
individuals, representing approximately 0.15 % of the city’s 14.5- 
million population, over a total of 111 weekdays. The dataset contains 
a total of 303 million geolocations. On average, each individual in the 
dataset has about 128 recorded geolocations per weekday. The spatial 
resolution of the geolocations is approximately 20 m. The spatial dis-
tribution of these geolocations is illustrated in Fig. 1, which is generally 
consistent with the distribution of the population in the city. The median 
temporal resolution of the dataset is approximately 7 min per geo-
location. The temporal distribution of the geolocations, largely deter-
mined by the usage patterns of the mobile devices which record 
geolocations less frequently when they are on standby, varies over time 
and differs between different individuals. Notably, the studied dataset 
does not contain any personally identifiable information of the in-
dividuals, and the study only uncovers empirical findings in an aggre-
gated manner. 

3.2. Identifying locations 

3.2.1. Detecting mobility phases 
Rhee et al. (2011) observed that GPS points tend to gather in a few 

limited areas, which aligns with the common sense that people tend to 
gather in places that attract them during the day. These places could be 
homes, work places, restaurants, coffee shops and so on, and in general, 

any location people tend to spend time at for a while. For a GPS tra-
jectory dataset, a place where an individual is standing still or moving 
around very slowly can be identified as a location (Papandrea et al., 
2016). 

According to this view, human mobility can be separated into two 
phases: a static phase where an individual spends some time in a place, 
and a movement phase where an individual moves towards a place. This 
study focused on locations during the static phase because the classifi-
cation of the returners and explorers is based on visited locations where 
individuals spend time during the static phase. 

A filter proposed in previous studies (Papandrea et al., 2016; Zignani, 
Gaito, & Rossi, 2013) was applied to extract the static phase from an 
individual’s GPS trace. If two consecutive points pi and pi+1 from an 
individual’s GPS trace, with timestamps t(pi) and t(pi+1) respectively, do 
not satisfy 

‖pi+1 − pi‖

t(pi+1) − t(pi)
≤ Δ (1)  

then the point pi+1 belongs to the movement phase and was removed 
from the trajectories. The threshold was set as Δ =1.4 m/s, based on the 
fact that observed human walking speed is generally at 1.1–1.4 m/s 
(Papandrea et al., 2016). In this way, points belonging to the movement 
phase, which accounted for 24.6 % of the dataset, were removed 
(Papandrea et al., 2016; Zignani et al., 2013). 

Fig. 1. Spatial distribution of geolocations in the preprocessed dataset.  

R. Wang et al.                                                                                                                                                                                                                                   



Sustainable Cities and Society 69 (2021) 102862

5

3.2.2. Extracting locations from GPS trajectories 
Based on trajectories belonging to the static phase, individuals’ 

location clusters were captured using DBSCAN algorithm. The algorithm 
removed abnormal data points from the dataset, and extracted the lo-
cations that each individual visited based on their trajectories. DBSCAN 
is a density-based algorithm widely used to find the high-density areas in 
space (Hu et al., 2015; Luo, Zheng, Xu, Fu, & Ren, 2017). Compared with 
other clustering methods, such as K-Means and hierarchical clustering, 
DBSCAN does not require a pre-defined number of output clusters and 
can detect clusters with different shapes (Dixon, 2017). Two key input 
parameters in DBSCAN were set as follows: the maximum search radius 
was set as 50 m and the minimum number of points to form a cluster was 
set as two, based on recommendations in prior research (Cuttone, Leh-
mann, & González, 2018). Each point cluster extracted by DBSCAN may 
include GPS points from different visits paid by the same individual. In 
addition, the location extraction should also consider the stay time 
feature (Zignani et al., 2013). It was observed that in individuals’ tra-
jectories there were many point clusters where individuals only stayed 
for a short period of time. These point clusters probably represented 
small pauses in individuals’ movement towards real destinations, rather 
than meaningful locations (Papandrea et al., 2016; Zignani et al., 2013). 
Therefore, point clusters where an individual never stayed for more than 
5 min during a single visit were removed. The centroids of the remaining 
point clusters were then extracted, and used to represent the locations 
that were visited by the individual. These locations were used for 
following analyses. 

3.3. Returner-explorer classification 

Returners are individuals whose mobility range is dominated by a 
few important locations such as home and workplace, while explorers 
have a strong tendency to explore a larger number of different locations. 
Following Pappalardo et al.’s definition (2015), individuals can be 
classified into returners or explorers based on the relationship of their 
overall mobility, measured by radius of gyration (rg), and their recurrent 
mobility, measured by the k -radius of gyration (r(k)g ). 

Specifically, radius of gyration has been widely used as the charac-
teristic distance covered by an individual’s trajectories. It can be 
calculated based on the following equation (Liao et al., 2019; Pappa-
lardo et al., 2015): 

rg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑

i∈L
ni

[

2r× sin− 1
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

sin2
(ϕi − ϕc

2

)
+ cosϕtcosϕcsin2

(φi − φc

2

)
√ ) ]2

√
√
√
√

(2)  

where L is the set of locations visited by the individual, r is the radius of 
the earth, ϕi and φi is the latitude and longitude of location i, ϕc and φc 
are the latitude and longitude of the center of mass computed on the 
individual’s visited locations, ni is the visitation frequency by the indi-
vidual in location i, N =

∑
i∈Lni is the total number of visits. 

The concept of the k -radius of gyration was introduced by Pappa-
lardo et al. (2015) to measure the recurrent mobility range of an indi-
vidual dominated by the individual’s top k frequently visited locations 
L1, ..., Lk. It can be calculated based on the following equation (Pappa-
lardo et al., 2015):  

where ϕ(k)
c and φ(k)

c are the latitude and longitude of the center of mass 
computed on individual’s top k most frequently visited locations, Nk is 
the sum of the weights assigned to the top k most frequently visited 
locations. 

Based on the radius of gyration and the k -radius of gyration, the 
classification of returners and explorers can be conducted using a 
bisector method (Pappalardo et al., 2015), where individuals whose 
mobility pattern satisfies the following criterion are coded as k -re-
turners, or otherwise as k -explorers: 

r(k)g >
rg

2
(4) 

The trajectories of two anonymous individuals, classified as 2- 
returner and 2-explorer respectively, over one week are shown in 
Fig. 2 to illustrate the typical difference between these two classes of 
individuals. The trajectories shown in the figure were aggregated with 
the location-extraction algorithm. 

Moreover, to test the impact of the observation duration on the 
returner-explorer classification results, the above classification method 
is applied to a total of 111 different durations extracted from the dataset. 
Specifically, as the value of n traverses from 1 to 111, the population is 
classified into returners and explorers based on the n -day duration, 
which includes the first n days covered by the dataset. A fixed value k =

2 is used in the classification. As such, a total of 111 sets of classification 
results are obtained, each associated with a distinct dataset duration. 

4. Analyses and findings 

The returner-explorer classification results on different observation 
durations are plotted in Fig. 3. The results showed that the proportion of 
returners was higher than that of explores for relatively short durations, 
with the former having a steady trend to shrink and the latter having a 
steady trend to increase as the observation duration expanded. The 
proportions of the two classes reached a balancing point at the duration 
of 21 days, beyond which the proportion of returners surpassed that of 
explorers. As the observation duration continued to expand, the 
changing rate of the proportion of both returners and explorers kept 
decreasing. To arrive at a detailed understanding of how the dichotomy 
of explorers or returners varies with different observation durations, the 
proportions of explorers or returners in the population, with the 
expansion of the observation duration from 1 day to 111 days, were 
further fitted into general function models, including Gaussian, poly-
nomial, exponential and power, using MATLAB. The results, details of 
which are provided in the supplementary materials, showed that the 
power function model could best characterize this dependence, with a 
high R-squared measure of goodness of fit (0.998). Moreover, the power 
function model suggested that the proportions of returners and explorers 
had a clear tendency to converge. In addition, the bootstrapping method 
was used to estimate the confidence intervals of the parameters of the 
above power function model. The results, details of which are provided 
in the supplementary materials, showed that the proportions of re-
turners and explorers among the entire population could also be well 
fitted by the power function and showed a clear tendency to converge, 
suggesting that the above conclusion about the observation duration- 
dependency of the dichotomy would hold regardless of the limited 
sampling rate of the population. 

The above result suggested two important findings: First, there is 
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notable observation duration-dependence of the returners and explorers 
dichotomy, since the dichotomous classification results are heavily 
impacted by the observation duration. This finding directly addresses 
the first research question of this study. Second, the classification results 
become generally stable when the observation duration is relatively 
long. Additional sensitivity analyses, the details of which can be found in 
the supplementary materials, suggested that these findings are robust to 

reasonable variations of a few key parameters of the methods explained 
in Section 3.2. 

Moreover, as Fig. 3 shows, changes in the classification results 
caused by the expansion of the observation duration converged to a low 
level after several weeks. To further examine this phenomenon, for any 
given n-day duration, the median value of radius of gyration (rg) and 2- 

Fig. 2. The trajectories of a 2-returner and a 2-explorer.  

Fig. 3. Returner-explorer classification results under different observation durations.  
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radii of gyration (r(2)g ) of all individuals were calculated and plotted in 
Fig. 4. As shown in Fig. 4, at the population level, as the observation 
duration increased, the average distance between individuals’ top two 
most frequently visited locations slightly decreased, whereas their 
average overall mobility range increased at a relatively higher rate. 
Based on Eq. (4), the above result suggested that, as the observation 
duration increases, the continuous increase of the proportion of ex-
plorers in the population is mainly driven by the expansion of in-
dividuals’ overall mobility range over time. That being said, intuitively, 
an individual’s radius of gyration cannot expand infinitely. Rather, it has 
a limit and may ultimately converge, which can be considered as a 
saturation process (Gonzalez et al., 2008). This explains why the clas-
sification results, as illustrated in Fig. 3, tend to become stable in the 
long term. 

In addition, the classification results were further examined to 
investigate whether their changes also decayed at the individual level. In 
Fig. 5, each bar shows the number of individuals whose classification 
flipped from returner to explorer or vice versa, when the observation 
duration expanded from n − 1 days to n days. The size of the ‘swinging’ 
group generally shrank as n increased, and it remained below 160 in-
dividuals (or 0.8 % of the population) after n exceeded 70. Among all 
individuals, 92 % had consistent classifications as n increased from 70 to 
111. The above result showed that most individuals’ classifications 
would not change in relatively long observation durations, suggesting 
that the changes of classification results also decayed at the individual 
level. 

5. Discussions 

5.1. Explanation one: information accumulation 

Given the observation duration-dependence of the returners and 
explorers dichotomy discovered from the above results, the next ques-
tion to answer is: what are the underlying explanations that have led to 
such observation duration-dependence. Due to the sampling nature of 
the trajectory data, individuals’ mobility patterns may not be 
completely captured based on the recorded trajectories (Song et al., 
2016), especially when the length of observation duration is short (e.g. 
several days). Stanley et al. (2018) examined GPS trajectories collected 
from over a hundred college students for 21 days, and revealed that 
knowledge gained from short-term datasets is often unstable and 
insufficient to form a complete picture of people’s routine spatial be-
haviors, considering the sampling nature of used data sources. They 
argued that information about people’s mobility behaviors accumulates, 
and that the mobility patterns derived from the information become 
more stable and accurate as the observation duration expands. They 
defined the ‘completeness’ of captured routine human spatial behaviors 
as the point at which marginal information gained from extra trajectory 
data becomes negligible according to the temporal analysis of the KL 
divergence. Based on this concept, they concluded that information 
divergence converged to a low level within two weeks for their dataset, 
and that information gains after two weeks could be negligible. In other 
words, two weeks of trajectory data of a homogeneous group (college 

Fig. 4. Median radius of gyration and 2-radii of gyration of the population under different durations.  

Fig. 5. Proportion of swinging group in population under different observation durations.  
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students) was found to be the minimum data required to completely 
capture routine human mobility. 

This study aimed to test whether the above information accumula-
tion explanation also exists in the returner-explorer classification, as it 
would provide an explanation of the observation duration-dependence 
of the returners and explorers dichotomy. More specifically, this 
explanation would suggest that the observation duration-dependence of 
the returners and explorers dichotomy is the consequence of the accu-
mulation of information used to infer people’s mobility patterns, and the 
accumulation process is completed when marginal information gains 
from extra data become negligible. 

Should the above explanation apply, it could be inferred that down 
sampling the trajectory data would impede the information accumula-
tion process and hence decrease the change speeds of the proportions of 
the two classes. Therefore, to test this explanation, each individual’s 
original trajectories in the dataset were uniformly resampled at a two- 
thirds sampling rate to generate a resampled dataset, and then at a 
one-third sampling rate to generate a second resampled dataset. The two 
resultant datasets had the same duration as the original dataset, i.e. 111 
days, but differed in terms of the amount of data. All individuals’ clas-
sification results on different durations of the two resampled datasets 
were computed using the method explained in Section 3.3, and the re-
sults were compared with those from the original dataset. The com-
parison is illustrated in Fig. 6. As evidenced in the figure, smaller 
datasets were associated with slower convergence processes. While the 
proportion of returners and that of explorers reached a balance on Day 
21 in the original dataset, this point was pushed back to Day 28 in the 
first resampled dataset, and further to Day 58 in the second resampled 
dataset. This result suggested that the returner-explorer classification is 
subject to a similar impact of the information accumulation process 
reported in Stanley et al.’s study (2018). 

In addition, the KL divergence series, whose computational method 
is detailed in the supplementary materials, were calculated for each 
individual in the dataset to determine the minimum days required to 
completely capture the individuals’ routine mobility (Stanley et al., 
2018). The result showed that, at the individual level, a median mini-
mum of 37 days was required to accumulate sufficient information to 
completely capture the individuals’ routine spatial behaviors. 

However, as shown in Figs. 3 and 4, changes in the classification 
results were observed among a good portion of individuals after the 
observation duration exceeded 37 days. This motivated us to examine 
whether the observation duration-dependence of the returners and ex-
plorers dichotomy is solely caused by the information accumulation 
process. Specifically, should the information accumulation process be 
the only cause, then randomizing the data would cause little effect on 
the minimum observation duration required to completely capture each 

individual’s routine mobility. To investigate whether the above infer-
ence is true, the time sequence of the original dataset was randomized, 
by preserving individual routines only up to the daily level. Using the 
randomized dataset, the population was classified into returners and 
explorers on the n-day duration, where n traversed from 1 to 111. Then, 
for each individual the minimum observation duration required to reach 
stable classification results was calculated, and compared with that 
obtained from the original dataset. The difference between these two 
durations was calculated for each individual, and the distribution of this 
difference within the entire population is illustrated in Fig. 7. As can be 
seen in the figure, for a sizable portion of the population, there was 
significant difference before and after the randomization. Specifically, 
over 50 % individuals had a difference over 10 days. Therefore, the 
above inference was proven false, which indicated that the trajectories 
should not be purely interpreted as time-series data, and that the 
observed observation duration-dependence of the returners and ex-
plorers dichotomy is a consequence resulting from human behaviors 
instead of a simple consequence of time constraints. Moreover, the 
above finding suggests that the information accumulation process is not 
the only explanation that dominates the observation duration- 
dependence the returners and explorers dichotomy. 

5.2. Explanation two: exploration of new locations 

A second possible explanation that may be responsible for the 
observation duration-dependence of the returners and explorers di-
chotomy is related to individuals’ visits to new locations. ‘Exploration’ 
refers to a visit to a place that has not been visited by an individual 
before. When an exploration occurs, it could impact the individual’s 
radius of gyration, especially when the distance of the new location 
largely differs from the individual’s previous characteristic traveled 
distance. This may in turn change the relationship between the in-
dividual’s recurrent mobility and overall mobility, hence flipping the 
individual’s returner-explorer classification. 

Individuals tend to explore new locations out of their regular paths, 
which may cause changes in their returner-explorer classification results 
(Quadri, Zignani, Gaito, & Rossi, 2018). Contrary to a common notion 
that individuals usually return to previously visited locations and 
explore new locations once in a while (Quadri et al., 2018), empirical 
evidence has shown that individuals’ probability for exploration every 
time they select the location of their next visit is between 0.2 and 0.25, 
in other words, on average an individual discovers a new place in every 
4 or 5 visits (Cuttone et al., 2018). For the dataset used in this study, 
Fig. 8 shows the average number of locations that each individual has 
visited since the beginning of the study period. This number grew 
steadily over time, and reached approximately 65 at the end of the study 

Fig. 6. Comparison of classification results from the original dataset and two resampled datasets.  
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period, which is consistent with results reported by Cuttone et al. 
(2018). 

For each individual, this study further identified the days when ex-
plorations occurred, and examined whether the individual’s returner- 
explorer classification changed on these days. If a change in the in-
dividual’s classification was observed on the same day when the indi-
vidual explored at least one new location, the change in the 
classification could be considered to be possibly caused by the explo-
ration. Using this criterion, it was found that 64 % changes in the clas-
sifications of all 21,240 individuals during the entire study period were 
possibly associated with the exploration of new locations. This finding 
indicated that individuals’ exploration behaviors, which were found to 
be common and consistent, may be a main cause for the observation 
duration-dependence of the returner-explorer dichotomy, particularly 
after the information process completes. 

Moreover, although individuals have a steady tendency to explore 
new locations, their mobility ranges do not diffuse with the same trend. 
Findings in prior research showed a bound nature of human trajectories, 
suggesting that individuals’ radius of gyration would become ‘saturated’ 
after several months’ observation and can be approximated by a mani-
festly slower logarithmic growth (Gonzalez et al., 2008; Song, Koren 
et al., 2010). This saturation process was also observed in this study, as 
illustrated in Fig. 4. This finding suggested that the influence of in-
dividuals’ exploration behaviors on their returner-explorer classifica-
tions would gradually decrease as the duration of observation expands. 

This inference helps explain the decreasing changing rate of the pro-
portions of the two subpopulations observed beyond 37 days in the 
dataset. 

5.3. Explanation three: changes in important locations 

A third possible explanation that may be responsible for the obser-
vation duration-dependence of the returners and explorers dichotomy is 
related to changes in individuals’ routine activities. Individuals’ routine 
activities, such as commuting, working and social activities, are usually 
associated with important locations such as home and workplace (Song 
et al., 2016). Moreover, they are inclined to spend the majority of their 
time in these few important locations. This means when individuals 
change their routine activities, their mobility behaviors may be affected, 
which in turn may cause changes in their returner-explorer 
classifications. 

Taking individuals’ top two most frequently visited locations as an 
example, this study aimed to investigate the influence of changes in 
important locations on individuals’ mobility patterns. The top two most 
frequently visited locations are usually individuals’ home and work-
place, which can be identified from their trajectories with relatively high 
accuracy by considering the time and frequency of the visits (Jiang et al., 
2013). Specifically, based on the notion that individuals are normally at 
their workplace during the daytime on weekdays, whilst they are most 
likely to be found at home during the nighttime, the periods of 9 a.m. to 

Fig. 7. The distribution of individuals’ differences in the minimum duration to complete information accumulation between the original and randomized datasets.  

Fig. 8. Average number of total visited locations of individuals in the dataset.  
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5 p.m. and 0 a.m. to 6 a.m. were used to define daytime and nighttime 
(Jiang et al., 2016), respectively. For each individual, the DBSCAN 
method was first used to identify the frequently visited locations. Then, 
for each week (five consecutive weekdays), these locations were ranked 
according to the visitation frequencies. The most frequently visited lo-
cations during the daytime and nighttime were identified as workplace 
and home for this individual. As the dataset included 22 weeks, for each 
individual there were up to 22 consecutive estimates of his/her home 
and workplace locations, which allowed for the detection of changes in 
these two locations. 

Based on the dataset, the home and workplace locations were iden-
tified for 20,626 individuals, among whom a total of 15,138 individuals 
had their recurrent mobility (k =2) dominated by the home and work-
place locations. For these 15,138 individuals, changes in their home and 
workplace location with distance over 500 m (Long & Thill, 2015) were 
captured and recorded, by comparing the consecutive weekly estimates, 
in order to investigate whether and to what extent these changes 
possibly affected the individuals’ classifications. Among the 15,138 in-
dividuals, 6,197 of them changed their home or workplace locations, 
and 49 % of the changes in their returner-explorer classifications were 
preceded by at least one home or workplace change within the previous 
two weeks. Conversely, 33 % of home and workplace changes associated 
with these 15,138 individuals were followed by at least one subsequent 
change in the corresponding individuals’ returner-explorer classifica-
tions within the following two weeks. The above findings, although not 
amounting to definitive conclusions, showed substantial correlations 
between changes in individuals’ important locations and changes in 
their returner-explorer classifications, suggesting the impact of the third 
explanation. This was further corroborated by the observation that the 
classification changes that followed the important location changes 
were generally lasting (they lasted 42 days on average), which was 
probably because changes in important locations tend to have a 
long-term and decisive impact on an individual’s mobility pattern. In 
sum, the above findings indicated that changes in peoples’ most visited 
locations, such as home and workplace, which are infrequent for each 
individual but occur consistently at the population level, may be largely 
responsible for the observed dynamics in returner-explorer classification 
results, particularly in the long term when the applicability of the other 
two explanations becomes limited. 

6. Conclusions, implications and future research 

The returners and explorers dichotomy has been widely applied to 
describe individuals’ mobility patterns in previous studies, in which the 
classification was conducted based on mobility datasets of different 
temporal durations, such as one month (Pappalardo et al., 2015), six 
months (De Nadai et al., 2019; Liao et al., 2019), or two years (Ales-
sandretti et al., 2018). The differing study durations may cause anom-
alies when the observation duration-dependence of the returners and 
explorers dichotomy is ignored. For example, the GPS dataset used in 
Pappalardo et al.’s study (2015) contained around one-month vehicle 
GPS trajectories, which was insufficient to reach reliable classification 
results. In fact, the researchers realized that there were always more k 
-returners than k -explorers regardless of the value of k, which contra-
dicted the outcomes from another dataset with much longer duration 
used in the same study. The researchers argued that the unexpected 
result may have been caused by the unbalanced representation of 
transportation modes in the collected GPS data. Yet, the above hy-
pothesis was not tested in the paper. The existence of the observation 
duration-dependence of the returner-explorer dichotomy, however, 
provides an alternative and more compelling explanation for the 
inconsistency in the above study: the proportions of returners and ex-
plorers are dependent on the observation duration, and the one-month 
GPS dataset contained insufficient information to reliably characterize 
individuals’ mobility patterns. Moreover, based on findings of this study 
related to the first and second explanations, when the dataset size is 

small and information is insufficient, as was the case with the above GPS 
dataset, the proportions of returners and explorers in a population 
would be overestimated and underestimated, respectively. 

The existence of the observation duration-dependence in the re-
turners and explorers dichotomy suggests that prior studies’ outcomes 
derived from the returner-explorer classifications may need to be reex-
amined. Particularly, prior findings based on short-term mobility data-
sets may yield inaccurate and unreliable characterization of individuals’ 
and population’s mobility patterns. Meanwhile, it was found in this 
study that the classification results would become stable, at both the 
population- and individual-level, suggesting that prior findings based on 
long-term mobility datasets may be more generalizable and reliable. The 
specific boundary between the short term and the long term may vary, 
depending on several factors such as the precision of trajectory data and 
the rate of data sampling. In addition, knowing that the classification 
results would become stable in the long term has another important 
implication. While reliable urban mobility studies prefer more and long- 
duration mobility data, data availability is always a challenge. Findings 
in this study suggest that a cut-off value of the amount of data can be 
identified for data collection to ensure reliable classification results 
while avoiding excessive data collection efforts. 

Three underlying explanations of the returner and explorer di-
chotomy were revealed and tested in this study, which altogether un-
cover the observation duration-dependence of the dichotomy. First, for 
the information accumulation explanation, the result of the KL series 
analysis showed that the average minimum observation duration 
required to capture the complete mobility space of the population was 
37 days, which is almost the twice of the average minimum days in the 
study of Stanley et al. (2018). This suggests that the minimum obser-
vation duration required to reliably capture human mobility patterns 
should be determined on a case-by-case basis, subject to impacts of the 
temporal and spatial resolutions of the dataset (Stanley et al., 2018). 
Also, the dataset used in Stanley et al. (2018)’s study involved students 
only, while the dataset used in this study was sampled from the general 
population of a megacity. The heterogeneity in urban demographics is 
another important factor to consider when determining the minimum 
observation duration. Second, regarding the exploration explanation, 
the findings in this study suggest that, although individuals have a 
steady tendency to explore new locations, their radii of gyration will not 
grow infinitely because of the recurrent nature of human mobility, as 
many of the newly explored locations are not far from the few import 
locations, such as home and workplace (Quadri et al., 2018). In addition, 
the findings highlight the significant impact of the exploration human 
mobility patterns, and indicated that it should be properly modeled to 
improve existing mobility predictors (Cuttone et al., 2018). Lastly, the 
third explanation suggests that changes in individuals’ daily activities 
such as commuting and social activities may cause changes in their most 
visited locations, hence impacting their returner-explorer classifica-
tions. For instance, urban residents may change home locations or 
workplaces for more balanced jobs-housing relationships. Using Beijing 
as an example, Huang, Levinson et al. (2018) found that over 60 % of the 
residents have more than two home moves and/or job changes over 
seven years. Such permanent changes in individuals’ mobility patterns 
are almost certain to be reflected in their return-explorer classifications. 
This also suggests that the observation of changes in individuals’ 
important locations could be used as a predictor of possible subsequent 
changes in their returner-explorer classifications. 

To sum up, based on the analysis of high-granularity trajectory data 
collected from a large and heterogeneous population, this study exam-
ined the observation duration-dependence of the returners and explorers 
dichotomy, and investigated three possible explanations that could 
explain the observation duration-dependence. By achieving these ob-
jectives, this study advances the understanding of the differences of 
individuals’ mobility patterns between the short term and the long term, 
and contributes to the existing literature on urban human mobility 
patterns and their dynamics. 
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The findings of this study could also shed light on a few practical 
challenges that cities are faced with. First, the revealed observation 
duration-dependence of human mobility patterns could underline and 
help avoid the often-seen mismatches between human mobility tracking 
technologies or mobility datasets over different temporal scales and 
their real-world applications in cities. Second, the explanations found to 
be dominating the observation duration-dependence of individuals’ 
mobility patterns could enable urban planners and policymakers to 
better understand and predict the mobility behaviors of the urban 
population, so that they can make more informed decisions regarding 
the provision and management of public goods (Zhang, Liu et al., 2019). 
Third, the temporal dynamics of individuals’ mobility patterns identi-
fied in this study could be used to improve upon existing contagion 
dynamics modeling and prediction approaches (Balcan & Vespignani, 
2011; Xu et al., 2017), which are critical to the control of infectious 
diseases, a major threat to public health faced by most cities as 
remarkably evidenced by the recent coronavirus pandemic. Fourth, 
based on the correlation between individuals’ spatial mobility and their 
social ties found in prior research (Fan et al., 2017; Pelechrinis & 
Krishnamurthy, 2016), the observation duration-dependence of in-
dividuals’ mobility patterns revealed in this study could help identify, 
explain and predict similar dynamics of individuals’ activities in the 
cyberspace. 

Lastly, this study bears three noteworthy limitations. First, this study 
only examined individuals’ trajectories in the city of Guangzhou. Future 
research could extend the investigation to other cities with differing 
demographic structures and urban forms to provide more generalizable 
findings. Second, this study only considered individuals’ trajectories on 
weekdays, thus the findings may not apply to urban mobility over 
weekends, holidays, or during extreme weather events. Additional vol-
unteered geographic information (VGI)-based empirical studies could be 
conducted to investigate and compare the observation duration- 
dependence of the dichotomy within different temporal contexts. 
Third, this study mainly focused on the effects of the three explanations 
on the observation duration-dependence of the dichotomy at the pop-
ulation level, and did not examine whether such effects would vary 
across different groups of individuals. This could be addressed in future 
research by considering certain demographic characteristics such as 
gender, age, occupation, and income, should relevant data become 
available. 
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