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A B S T R A C T

Extreme weather events (EWEs), due to their high uncertainty, massive scale, irreversibility and destructiveness,
may significantly impact cities, including causing notable perturbation to urban human mobility. Recent re-
search has substantially advanced the knowledge on general human mobility patterns in cities, primarily about
the spatiotemporal characteristics of trajectories of urban population, but has rarely examined the perturbation
of these mobility patterns during EWEs. To quantitatively assess human mobility perturbation, this study pro-
poses to measure both the instantaneous perturbation at any given moment during an EWE, and the accumulated
perturbation over the entire timespan of the EWE. Using two metrics that are developed for the above purpose, a
case study is conducted in Nanjing, a major city in China, which recently experienced record-breaking rainstorm
and snowstorm events. Based on trajectories of all taxies and buses in Nanjing during these events, the case study
quantitatively assesses the perturbation of human mobility in the city, compares it between two EWEs and
between two modes of transport, and analyzes the geographical distribution of the perturbation within the city
boundary. Based on the results, further insights into the impacts of EWEs on urban human mobility are discussed
in the paper.

1. Introduction

Extreme weather event (EWE), such hurricane and flood, by defi-
nition is an event that is rare at a particular place and time of year,
which would normally be as rare as or rarer than the 10th or 90th
percentile of a probability density function estimated from observations
(IPCC, 2014). Yet, the world is witnessing a trend of increasing fre-
quency and intensity of EWEs in the past decades (Sobel & Tippett,
2018). For instance, as recent as in 2017, within ten weeks from August
to October ten consecutive Atlantic storms reaching hurricane strength
hit America, matching a 124-year-old record. Moreover, owing to the
impacts of global climate change and sea level rise (Bouwer, 2011;
Kelman, Gaillard, & Mercer, 2015 ; Van Aalst, 2006), such trend is
projected to continue to escalate (Forzieri et al., 2016; Yin, Yu, Lin, &
Wilby, 2017), which highlights the need for knowledge about the
growing EWE-induced impacts and enhancement of anticipatory
adaptation and resilience.

EWEs, due to their high uncertainty, massive scale, irreversibility
and destructiveness, impose significant threats to human wellbeing.
Such threats are especially unprecedented in urban regions, which have
been the primary bearer of EWE-induced losses due to the high density
of population and assets in cities (Hurricane Sandy rebuilding strategy,

2013) and cascading risks associated with complexities of urban sys-
tems (Hasan & Foliente, 2015; Mao & Li, 2018; Yang, Ng, Zhou, Xu, &
Li, 2019). One remarkable example of such EWE-induced impacts on
urban regions, as prior research has revealed, is that during these dis-
asters the mobility patterns of urban population usually exhibit sig-
nificant variations (Chapman, Nilsson, Larsson, & Rizzo, 2017). These
variations involve drastic changes in the intensity and spatiotemporal
characteristics of trajectories of urban population. Such variations of
urban mobility could be attributed to a variety of factors, such as re-
duced transportation infrastructure capacities, adverse weather and
commuting conditions, interrupted economic activities, and disturbed
social dynamics. Hence, they provide a unique angle to examine the
overall impact of EWEs that the urban population endures.

Recent research has substantially advanced the knowledge of gen-
eral human mobility patterns in cities, thanks to the increasing acces-
sibility to various human trajectory data in the form of mobile phones
records, GPS traces of vehicles and human beings, and check-ins of
online social media. These data have helped researchers to uncover the
patterns of human mobility from more perspectives and gain deeper
understanding of their underlying mechanisms. Findings of these stu-
dies have also been applied to various domains, such as urban planning
(Clarry, Imani, & Miller, 2019; Khan, Babar, & Ahmed, 2017; Yuan,
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Zheng, & Xie, 2012) and transportation management (Gohar,
Muzammal, & Rahman, 2018; Pan, Zheng, Wilkie, & Shahabi, 2013).
One major gap in the literature, however, is that there is comparatively
little understanding of human movements in cities during extreme
events such as EWEs (Wang & Taylor, 2014), which has largely pre-
vented the prediction and mitigation of EWE-induced impacts on urban
population. To advance this line of research, academics would benefit
from having proper metrics that assess (1) how human mobility pat-
terns are perturbed by EWEs and to what extent, and (2) how such
perturbation varies over the timespan of EWEs. In practice, cities would
be enabled by a perturbation assessment tool (1) to predict human
mobility perturbation, and warn the impacted population ahead of the
EWEs; (2) to monitor the EWE-induced impacts with real-time trajec-
tory data, and take informed measures to mitigate the impacts; and (3)
to conduct quantitative post-event assessment of the EWE-induced
impacts on urban population, and learn from the impact assessment to
develop adaptive capacities to withstand similar events in the future.

To contribute to the existing knowledge about perturbations that
EWEs may cause to urban human mobility, this paper reports findings
and lessons learned from a case study in Nanjing, China. A major city in
China with a population of 8.3 million, Nanjing recently experienced a
rainstorm in June 2017 and a snowstorm in January 2018. Both events
broke the city’s meteorological record in decades, and caused sig-
nificant impacts on human mobility in the city. The objective of this
case study is to quantitatively assess the human mobility perturbation
caused by these two events. To achieve this objective, this case study
collected the trajectories of all buses and taxis in Nanjing in periods
covering the rainstorm and snowstorm events. Both bus trajectories
(Jiang, Guan, Zhang, Chen, & Yang, 2017; Liu et al., 2017) and taxi
trajectories (Tang, Liu, Wang, & Wang, 2015; Zheng, Rasouli, &
Timmermans, 2016) are widely used for studying urban human mobi-
lity in the literature, and are considered indicative of the trends of city-
wide human mobility (Wang, Yang, Sun, & Gao, 2017; Wang, Wang, &
Taylor, 2017). Based on the collected trajectories, the case study mea-
sures both the instantaneous perturbation at any given moment during
an EWE, and the accumulated perturbation over the entire timespan of
the EWE, using two different metrics. It is anticipated that the findings
and lessons learned would help decision makers of cities to better un-
derstand the mobility pattern of urban population impacted by EWEs,
and develop informed and effective policies and measures to enhance
the resilience of cities to EWE-induced impacts.

2. Related work

2.1. Measurement of human mobility

Driven by the rising awareness that understanding of human mo-
bility can bring significant value to various applications such as urban
planning (Yuan et al., 2012), traffic management (Pan et al., 2013) and
epidemiology (Balcan et al., 2009), there is an increasing volume of
literature that examines human mobility in cities. Measuring human
mobility, namely quantifying human trajectories recorded in different
forms with certain metrics, is the prerequisite of analyzing the statis-
tical characteristics of human mobility and understanding its patterns.
For human mobility measurement purpose, a few metrics have been
proposed in prior research. These metrics can be broadly divided into
two categories, which respectively measure the spatial and temporal
characteristics of human mobility.

To measure the spatial characteristics of human mobility, dis-
placement (aka flight length, jump length or trip) is a widely used
metric. Displacement is defined as the distance between two con-
secutive locations which an individual travels (Wang & Taylor, 2016).
Measurement of displacement has been widely used in human mobility
modeling and analysis research (Barbosa et al., 2018; Brockmann,
Hufnagel, & Geisel, 2006; Gonzalez, Hidalgo, & Barabasi, 2008). Stu-
dies found that there was power law distribution between displacement

and its frequency based on circulation data of bank notes (Brockmann
et al., 2006) and call detail record (CDR) data (Gonzalez et al., 2008),
and exponential distribution or segmentation combinations of multiple
distributions based on GPS data in public transportation (Liang, Zheng,
Lv, Zhu, & Xu, 2012; Roth, Kang, Batty, & Barthelemy, 2011; Wang,
Huang, & Yan, 2012). A variation of displacement is speed and direc-
tions of movements (Kim, Kotz, & Kim, 2006), from which certain
characteristics that reflect human mobility patterns could also be ob-
tained. Another common metric for human mobility quantification is
Mean Square Displacement (MSD), which can be calculated as the
average squared displacements of individuals after a time period. MSD
reflects the type of diffusion of individuals relative to their starting
points in a trip (Barbosa et al., 2018). Radius of gyration is another
metric introduced in prior research (Wang & Taylor, 2018). Defined as
the root mean square distance of points from a given axis (Barbosa
et al., 2018), radius of gyration characterizes how far an individual is
from the center of the mass of his movements. Radius of gyration is also
generally believed to follow a power law distribution (Gonzalez et al.,
2008). Individuals with comparable radius of gyration usually share
certain similarities in their mobility, hence, several studies were able to
use this metric to classify mobile individuals into different groups to
further study their respective mobility patterns (Oliveira, Viana,
Sarraute, Brea, & Alvarez-Hamelin, 2016).

On the other hand, a number of studies have focused on the tem-
poral characteristic of human mobility. Transfer time is a widely used
metric for this purpose (Papandrea et al., 2016). It is defined as the time
needed to move from one point to another. Other common metrics
include pause time (aka interval time) (Rhee et al., 2011), which refers
to the interval time between an individual’s continuous behaviors such
as between mobile phone calls, and waiting time (aka visiting time,
contact time or duration) (Oliveira et al., 2016), which refers to the
time of an individual staying at a certain place or the completion time
of a certain task. Points of interest (PoIs), which refer to places visited
by an individual, are important in understanding the human mobility
characteristics. A metric of relevance (R), defined as the proportion of
time which a given PoI has been visited by an individual, is used to
measure the importance of PoIs and classify people that visit them
(Papandrea et al., 2016). A small number of important PoIs, such as
home, workplace and school, usually take up most of the time. Re-
searchers also ranked PoIs by frequency of visits and found that there
was a Zipf law between the rank of the PoIs and the frequency of visits
(Gonzalez et al., 2008). Moreover, the understanding of temporal
characteristic of human mobility makes the prediction of human
movement possible (Oliveira et al., 2016; Papandrea et al., 2016). For
prediction purpose, it is important to measure the randomness of
human trajectories, for which the concept of entropy is introduced (Lu,
Wetter, Bharti, Tatem, & Bengtsson, 2013; Song, Qu, Blumm, &
Barabási, 2010). Examples of entropy-related metrics proposed in the
literature include random entropy, which captures the degree of pre-
dictability of an individual’s whereabouts when assuming each location
is visited with equal probability, temporal-uncorrelated entropy, which
reflects the characteristics of the heterogeneity of visitation patterns,
and actual entropy, which captures the full spatiotemporal order of the
mobility pattern of an individual (Lu et al., 2013; Song et al., 2010).

2.2. Human mobility perturbation under extreme events

Thus far, only a few studies have explored human mobility during
disaster times. Most of these studies found that human mobility would
be significantly perturbed by disasters. For instance, Lu, Bengtsson, and
Holme (2012) examined the cumulative distributions of displacements
and radius of gyration for residents in Port-au-Prince after the 2010
Haiti earthquake, and found that these distributions changed sig-
nificantly during disaster times. Based on geo-tagged twitter data,
Wang and Taylor (2014) also found that the distributions of displace-
ments of residents in New York City significant changed during
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Hurricane Sandy. They further explored human mobility patterns under
different disaster events and found that the power law distribution
dominated human mobility in most cases (Wang & Taylor, 2016).
However, most of these studies stopped short of assessing the human
mobility perturbation with quantitative metrics.

In addition, several studies noticed the temporal characteristics of
human mobility perturbation over the timespan of disaster events. One
example is the study conducted by Yabe, Tsubouchi, Sudo, and
Sekimoto (2016), in which the researchers calculated the average
movement of individuals in regions impacted by Kumamoto Earthquake
using smartphone GPS data. They found that the movement increased
in the immediate aftermath of the earthquake but then decreased over
time. Similarly, and Wang, Wang et al. (2017) studied the impact of a
severe winter storm on human mobility in the northeastern United
States during thirty-five 24 -h periods, and reported that the percen-
tages of short trips (8–100 meters) and long trips (10 km or more)
varied from Monday to Friday differently during the storm than during
normal weeks. In another study done by Wang and Taylor (2017), the
researchers used Fisher information and network metrics, such as
number of edges, number of vertices, and average degree, in human
mobility networks to study the perturbation of human mobility during a
flood event. The daily variations of these metrics from ten days before
the event to ten days after the event were illustrated, which suggested
that the human mobility perturbation was highly dynamic, although
such dynamics or the accumulated perturbation over time were not
quantitatively assessed.

2.3. Gaps in measuring human mobility perturbation

Despite the above studies that have attempted to report and assess
the perturbation of urban human mobility, there still lacks proper
metrics for quantitatively assessing human mobility perturbation
caused by EWEs or other extreme events alike. Several metrics that
were introduced in prior research and could be used for this purpose are
either indirectly indicative (e.g. displacement and its variations),
cannot be interpreted physically (e.g. variables in data driven human
mobility models), or are not normalizable and hence cannot be used as
benchmark (e.g. complex network metrics). Moreover, the perturbation
of human mobility during extreme events is usually dynamic, with
changing magnitudes and other complex temporal characteristics. Yet,
none of the existing metrics can capture the temporal variation of the
perturbation and measure the overall impact of EWEs on human mo-
bility over the entire timespan of the events. The lack of human mo-
bility perturbation metrics has prevented deep understanding of human
mobility perturbation during EWEs and the development of proper

measures to mitigate such adverse impacts. In addition, although var-
ious types of trajectory data have become available for human mobility
studies in recent years, prior research on human mobility during ex-
treme events has mostly relied on CDR or social media check-in data,
which are relatively sparse in time and space. It may be possible to
capture and assess the EWE-induced perturbation of human mobility at
a higher granularity when denser trajectory data, such as continuous
GPS tracking data, are used.

3. Case study in Nanjing

3.1. Case descriptions

3.1.1. Rainstorm and snowstorm events
Nanjing is the provincial capital of Jiangsu, China, with a total

population of over eight million people. On June 10, 2017, the city
experienced a major rainstorm. The city issued a red flag warning,
which was the highest warning level set by China Meteorological
Administration (CMA), meaning the rainstorm is causing or probably
going to cause flooding and ground transportation interruptions, and
people are advised to stay indoors (China Meteorological
Administration, 2018). The rainstorm lasted for around one day with a
total precipitation of more than 210mm, setting a new meteorological
record of the city in 66 years (Xinhua, 2017). The peak hourly rainfall
far exceeded the threshold of the highest level of intensity of rainfall
("heavy", over 7.6 mm per hour) according to the classification of
American Meteorological Society (AMS, 2012).

About seven months later, the city was caught in another EWE.
Beginning on January 24, 2018, a snowstorm hit Nanjing and lasted
intermittently for almost four days. It was the heaviest snowfall in the
city in the past ten years, with around 40mm of snow water equivalent
(SWE). China's National Observatory issued an orange flag snowstorm
warning on January 25, 2018 (Xinhua, 2018), which was the second
highest warning level of snowstorms set by CMA, meaning the snow-
storm is causing or probably going to cause major impacts on trans-
portation and agriculture, and people are advised to stay indoors (China
Meteorological Administration, 2015). A large number of buses were
forced to stop operation or take detours, and the airport of the city was
temporarily shut down (China Central Television, 2018). Based on
precipitation records obtained from the provincial meteorological bu-
reau, the hourly rainfall and snowfall (SWE) in the city during the
above two EWEs are depicted in Figs. 1 and 2, respectively.

3.1.2. Trajectory data
As regulated, every bus and every taxi in Nanjing is equipped with a

Fig. 1. Hourly precipitation during the rainstorm.
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sensor, which is configured to report to a central server approximately
every ten seconds during operation. The reporting contains a number of
data fields, the ones relevant to trajectories being vehicle ID, time-
stamp, longitude and latitude. Tables 1 and 2 show a few examples of
raw data entries of the buses and taxis trajectories, respectively. The
bus trajectory data were collected from May 1, 2017 to June 30, 2017
and from December 1, 2017 to February 4, 2018, which covered 6848
buses and included more than three billion data entries. The taxi tra-
jectory data were collected from May 1, 2017 to June 30, 2017, which
covered 12,432 taxis and included more than one and a half billion data
entries. These data were cleaned, by filtering corrupted entries caused
by sensor malfunctions and merging duplicate entries, and prepared for
analysis of human mobility perturbation in the city.

National and local media outlets reported that these two EWEs and
the associated inundation and low visibility resulted in serious capacity
reductions of numerous segments in the road network, caused sig-
nificant city-wide traffic congestions, and severely impacted the overall
commuting conditions in the city. Many residents were forced to stay
indoors, and various municipal services including public transportation
were interrupted (Lu, 2018; Wang, 2017).

This case study aims to assess the impacts of these two EWEs on the
human mobility in Nanjing. Specifically, this case study aims to mea-
sure both the instantaneous perturbation at any given moment during
an EWE, and the accumulated perturbation over the entire timespan of

the EWE, so as to provide a comprehensive account of the deviation
between human mobility during EWE and its normal state in the case
city.

3.2. Methods

3.2.1. Assessment of human mobility perturbation
In order to measure the instantaneous perturbation at any given

moment during an EWE, a proper metric is needed. This metric should
be physically meaningful, computable, and comparable. Physically
meaningful means the metric should be derived from or interpretable
into variables in physics based models, rather than data driven models,
therefore it can be theoretically explained and acted upon in reality;
Computable means the computation of the metric should be feasible
based on available form of human trajectory data; Comparable means
the value of the metric should have clear boundaries, and it can be
normalized so as to allow for benchmarking between different sce-
narios. Based on the above criteria, a metric termed relative total dis-
placement (RTD) is introduced as follows:

First of all, as aforementioned, displacement (d) is one of the most
widely used metrics for measuring human mobility based on human
trajectories. By accumulating a series of consecutive displacements
traveled by all individuals in question (in this case study, an individual
refers to either a bus or a taxi), total displacement (TD) can be calcu-
lated. Adapted from vehicle miles traveled (VMT), a metric widely used
in the transportation domain (Ewing & Cervero, 2010), TD can be
calculated based on Eq. (1):

=
= =

TD d
m

i

n

ij
j 1 1

1

(1)

where m is the number of individuals, n is the number of locations the j-
th individual visits during a timespan (e.g. an hour), and dij is the i-th
displacement in the trajectory of the j-th individual, which can be
computed based on Eq. (2) (Wang & Taylor, 2016):

= × ++
+

+d r2 sin sin (
2

) cos cos sin (
2
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1, ,
2 1, ,

(2)

where r denotes the radius of the earth, θi,j and φi,j denote the latitude
and longitude of the first point of the i-th displacement in the trajectory
of the j-th individual in radians, and θi+1,j and φi+1,j denotes the lati-
tude and longitude of the second point of the i-th displacement in the
trajectory of the j-th individual in radians.

TD accounts for two parts of influence that EWEs may have on
human trajectories, including reduced travel speed and hence smaller

Fig. 2. Hourly snow water equivalent during the snowstorm.

Table 1
Examples of bus trajectory data entries.

Bus ID Timestamp Longitude Latitude

112* 2017/12/5 10:00:08 118.798000 32.087540
112* 2017/12/5 10:00:18 118.798900 32.086930
112* 2017/12/5 10:00:28 118.799500 32.086680
237* 2018/1/13 3:27:06 118.817183 32.101106
237* 2018/1/13 3:27:16 118.816605 32.101149
237* 2018/1/13 3:27:26 118.816296 32.101144

Table 2
Examples of taxi trajectory data entries.

Taxi license
plate number

Timestamp Longitude Latitude

A7535* 170610080206 118.788020 31.995780
A7535* 170610080213 118.788940 31.995180
A7535* 170610080222 118.789930 31.994480
AB385* 170606001202 118.807760 32.037212
AB385* 170606001214 118.807610 32.037804
AB385* 170606001226 118.806790 32.037770
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displacement of operating buses and taxis due to poor road conditions
and abnormal traffic congestion, and non-operation of buses and taxis
due to inaccessibility to service in certain areas or change of work
schedules during EWEs. After TD is calculated, a baseline is needed in
order to assess the deviation of TD from its normal state, namely the
level of perturbation of human mobility. The baseline, denoted as TD,
measures the total displacement of all individuals during a timespan
should the EWE not happen. TD can be calculated based on TD values
under normal conditions. For a given timespan (e.g. an hour) during an
EWE, assuming it shares with n timespans that are under normal con-
ditions the same circumstances that could possibly impact human mo-
bility, except the weather condition, then itsTD value can be calculated
as:

=
=

TD TD
i

n

i
1 (3)

where TDi is TD value of the i-th timespan under normal conditions.
Based on the TDi value, RTD can be calculated by normalizing TD with
TD, as shown in Eq. (4):

= ×RTD TD
TD

100% (4)

RTD is a normalized metric that measures the deviation of actual
human mobility during an EWE from its normal state, and is therefore a
reasonable metric for assessing the magnitude of instantaneous EWE-
induced human mobility perturbation.

3.2.2. Assessment of accumulated perturbation impacts on human mobility
As an EWE develops throughout its entire timespan, its character-

istics change, leading to variations in its impacts. These variations,
coupled with the fact that urban population tend to adapt to EWE-in-
duced impacts by dynamically adjusting their travel preferences and
behaviors (Zanni & Ryley, 2015), may cause human mobility pertur-
bation to be highly fluctuant. It is therefore important to track the
fluctuations and evolution of human mobility, and assess the accumu-
lated perturbation impacts throughout the entire timespan of the EWE.

During the timespan of an EWE, human mobility begins to be per-
turbed when it is impacted by the EWEs, and this perturbation lasts for
a certain period of time until the impact of EWE fades away. Motivated
by the resilience concept and resilience quantification framework
(Cimellaro, Reinhorn, & Bruneau, 2010), the evolution of human mo-
bility perturbation can be depicted in a curve (e.g. Fig. 3) to visually
illustrate the impacts of EWEs on the mobility of urban population.

Moreover, since human mobility perturbation can be measured by a
normalized variable RTD, whose value varies between [0,1], in-
tegrating RTD over the timespan of an EWE will yield a normalized
metric for assessing the accumulated perturbation (AP) of human mo-
bility:

= =AP RT
t t

dt RT
t t

dt1 D 1- D
t

t

t

t

1 0 1 00

1

0

1

(5)

where t0 denotes the moment of occurrence of perturbation, and t1 de-
notes the moment of full restoration of human mobility.

The value of AP is determined not only by the magnitude of human
mobility perturbation, but also by the duration of EWE impacts. This
duration may exceed the timespan of the EWE and last for considerably
longer time, and is therefore particularly important in the assessment of
overall EWE-induced human mobility perturbation. It needs to be
pointed out that t0 and t1 are not necessarily equal to the beginning (t0 )
and end (t1 ) of an EWE. Based on Eq. (2), to calculate AP it is important
to determine the value of t0 and t1. It is proposed in this study that t0
should be the moment when the RTD value first drops below 95% of the
baseline; t1 should be the first point of time after which the hourly RTD
value remains above 95% for at least the following 24 h, so as to ensure
that by time t1 the impacts of EWE have completed faded away and the
human mobility has fully and stably bounced back to its normal pat-
tern.

3.2.3. Metrics computation in the case study
Using bus trajectories and one-hour timespan as an example, TD was

calculated in the case study in the following steps. First, the trajectory
of each bus within a given hour was obtained from the trajectory da-
taset and organized in chronological trajectory sequence as follows:
[[Bus ID, [longitude1, latitude1], [longitude 2, latitude 2], …, [longitude n,
latitude n]]. Next, the displacement between every two adjacent co-
ordinates in the trajectory sequence was calculated. Then, the hourly
displacement of each bus was computed by accumulating all displace-
ments obtained from the trajectory sequence, and TD was computed by
accumulating the hourly displacement of all buses in the city. The TD
for taxis was calculated similarly. Due to possible sensor errors, there
could be erroneous data and outliers in the TD values. A screening rule
was applied to eliminate outliers, where the hourly TD of a bus or a taxi
exceeded 80 km or 120 km, since values above these thresholds were
highly unlikely given the normal traffic conditions in the city.

TD was calculated on an hourly basis. Considering the obvious daily
periodicity (e.g. peak hours of a day) and weekly periodicity (e.g. dif-
ferences between working days and weekends), the hourly TD value
was determined based on the mean value of TD of the same hour of the
same day over five weeks preceding or succeeding the week of the
EWEs.

The reliability of this baseline depends on the assumption that
under normal weather condition, given the time of the day and the day
of the week, the TD value is invariant between different weeks. To as-
sess the reliability of TD, the above assumption was tested by assessing
the level of similarity between TD of different weeks. Specifically, the
difference of TD values between weeks i and j was calculated based on
Eq. (6):

=
+= = =d

TD TD
n

TD TD
n

( )
2ij

k
n

k
i

k
j

k
n

k
i

k
n

k
j

1
2

1 1
(6)

where TDk
i and TDk

j denote k-th hourly TD value of week i and week j,
respectively, and n denotes the number of hours in a week. The TD
values of all five baseline weeks are plotted in Figs. 4–6, and the dif-
ferences between these weeks calculated based on Eq. (6) are sum-
marized in Tables 3–5.

As can be seen in Figs. 4–6 and Tables 3–5, the hourly TD values
were highly consistent across the five weeks. Moreover, the differences
of TD between any two weeks were all below 0.5%. These results
showed that the hourly TD values were highly stable under normal
conditions, andTD calculated in this case study could provide a reliable
baseline for following assessment and analysis of urban human mobility
perturbation.

In addition, based on the aforementioned criterion, t1 was calculated
to be 23:00, June 10, 2017 for bus trajectories and 3:00, June 11, 2017
for taxi trajectories during the rainstorm event, and 20:00, January 31,
2018 for bus trajectories during the snowstorm event. After these times,Fig. 3. Curve of human mobility perturbation.
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the urban human mobility in Nanjing, assessed based on respective
trajectory data, had fully returned to its normal state and remained
stable afterwards.

4. Results

The human mobility perturbation in Nanjing during the rainstorm
and snowstorm events was assessed using the aforementioned metrics
in this case study. The results are summarized in Table 6. It needs to be
noted that all calculation and analysis were repeated twice in this study,
in which the TD values were computed on an hourly basis and a 15-
minutely basis, respectively. The results were fairly consistent, in-
dicating that the time granularity of the TD values would not impact
any results and conclusions. The results reported below are based on
hourly TD values. In the remainder of this section, these results are
analyzed and interpreted from three angles, including comparison be-
tween two EWEs, comparison between two transport modes, and geo-
graphical distribution of the perturbation.

4.1. Comparison between different EWEs

The RTD curve based on bus trajectories for the rainstorm event is
shown in Fig. 7. The rainstorm began at 23:00, June 9, and the per-
turbation of RTD began eight hours later at 7:00, June 10, when the
EWE started to show significant impact of on human mobility in the
city. The rainstorm lasted for 33 h and had a total precipitation of over
210mm. During this period, the RTD curve reached its lowest point
(83.59%) around 13:00, June 10. The rainstorm ended around 7:00,
June 11, whereas RTD fully and stably recovered at 23:00, June 10.
This suggested that the human mobility in Nanjing had already started
to restore in the course of the event, when the rainfall began to abate,
and since the rainfall was rather small in the last few hours of the event,
the human mobility had fully restored to its normal state before the rain
completely stopped, showing significant resilience to this EWE. Based
on the RTD curve and Eq. (5), the AP value was calculated to be 0.111,
which also indicated that, despite the record-breaking amount of
rainfall, the human mobility in Nanjing was not severely impacted.

The RTD curve based on bus trajectories for the snowstorm event is

Fig. 4. TD values of bus trajectories for five weeks near rainstorm.

Fig. 5. TD values of bus trajectories for five weeks near snowstorm.
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shown in Fig. 8. As can be seen in the figure, the snowstorm began at
19:00, January 24, and the perturbation of RTD began nine hours later
at 5:00, January 25. The snow temporarily stopped between 3:00,
January 26 and 7:00, January 27, after which the city was met with
another wave of snow until 13:00, January 28. During this period, the
RTD value oscillated significantly exhibiting a W-shape, reaching its
low values during the daytime and partially bouncing back at night-
time. The lowest RTD value (27.65%), in other words the largest human
mobility perturbation, was observed at 7:00, January 26. The relatively
higher RTD values at nighttime showed that the human mobility was
barely perturbed at night, suggesting that the magnitude of in-
stantaneous perturbation may be escalated by increases in the intensity
of human mobility. The snowstorm ended at 13:00, January 28,
whereas RTD fully and stably recovered at 20:00, January 31, in-
dicating that the perturbation of human mobility lasted for an extra
78 h beyond the end of the snowstorm event. The duration of the
human mobility perturbation almost doubled the duration of the
snowstorm event. Based on the RTD curve and Eq. (5), the AP value was
calculated to be 0.210.

The above results from both EWEs showed that there were sig-
nificant delays between the occurrence of EWEs (t ’0) and appearance of
observable perturbation of human mobility (t0), indicating that the
urban population exhibited certain level of resistance to EWEs and was
able to absorb their initial impacts in the first few hours. There was
significant deviation between the end of EWEs (t’1) and disappearance of
human mobility perturbation (t1) as well, indicating that human mo-
bility may fully recover before or after the end of EWEs, depending on
the type and intensity of the events. In addition, the instantaneous
human mobility perturbation had larger magnitude and significant os-
cillation during the snowstorm, compared to during the rainstorm. This
suggested that Nanjing, located in the southern and warm region of
China, was not well prepared for snowstorms, had relatively high

vulnerability to such EWEs, and experienced remarkable impacts in this
particular event.

4.2. Comparison between different modes of transport

Other than buses, taxis provide another important mode of transport
in the city. Prior studies have found that human mobility based on these
two modes of transport had different patterns under normal condition
(Jiang et al., 2017). However, when impacted by EWEs, whether and
how bus-based and taxi-based human mobility would be perturbed
differently remains unknown. To investigate this issue, the RTD curve
based on taxi trajectories during the rainstorm is illustrated in Fig. 9.
While this curve had a similar shape to the RTD curve based on bus
trajectories, these two curves had several major differences. Firstly, for
taxi-based human mobility, the RTD value started to decrease almost
immediately after the rainstorm started, suggesting that taxi-based
human mobility was much more sensitive to EWE impacts. Such sen-
sitivity was also reflected by the fact that RTD curve based on taxi
trajectories had a lower bottom value of 79.21% and lower AP value of
0.145, showing that the rainstorm caused larger perturbation to taxi-
based human mobility. This difference was probably because taxis were
relatively less regulated than buses, and had more flexibility to choose
not to work when weather conditions and road conditions were poor.
Bus services, on the other hand, were more regulated by bus companies
and local transportation authority, which were motivated to maintain
public transportation services during EWEs. Hence, bus services showed
higher resilience to EWE impacts, and bus trajectories and bus-based
mobility were relatively less perturbed.

4.3. Human mobility perturbation in different subareas

To further analyze the impact of the two EWEs on human mobility

Fig. 6. TD values of taxi trajectories for five weeks near rainstorm.

Table 3
Difference of TD values of bus trajectories among five weeks near rainstorm.

May 5-9, 2017 May 19-23, 2017 May 26-30, 2017 Jun 16-20, 2017 Jun 23-27, 2017

May 5-9, 2017 —
May 19-23, 2017 0.230% —
May 26-30, 2017 0.254% 0.182% —
Jun 16-20, 2017 0.155% 0.129% 0.137% —
Jun 23-27, 2017 0.241% 0.204% 0.207% 0.139% —
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in Nanjing, the geographical distribution of the human mobility per-
turbation was assessed. The city was divided by grids into 144 subareas,
each with an area of 5×5 km2. The trajectories that fell into each grid
were analyzed to assess the human mobility perturbation within that
subarea. Due to less density of trajectories in some subareas, the cri-
terion of determining t1 was slightly loosened and adjusted as the first
point of time after which the hourly RTD value of the following 12 h
remained to be above 95%.

The results are illustrated in Figs. 10–12. The color in these figures
represents the level of human mobility perturbation. Greenish color
indicates less perturbation, and reddish color indicates more pertur-
bation. The grey color indicates that there were no or too few trajec-
tories in those subareas to calculate valid AP values, and hence the
perturbation in those subareas was not assessed. In Fig. 10, the color
distribution is relatively uniform and greenish, with little geographical
variation, suggesting that the bus services were maintained generally
well across the entire city during the rainstorm. In Figs. 11 and 12,
there was noticeable difference in color between the southern and
northern parts of the city. Most subareas in the south were green while
most subareas in the north were yellow and red, which indicated that
the southern part of the city was more resilient to the EWEs. Further
investigation revealed that the southern part had relatively better
economic conditions and it was where many provincial and municipal
government agencies were located. Hence, when the snowstorm hap-
pened, measures of mitigation and recovery were likely to kick in first
in the south. Yet, it should be noted that this may not be the only reason
for the above difference. Infrastructure condition, geographical char-
acteristics and distribution of snowfalls and rainfalls might also affect
the AP values of the subareas. The above geographical difference would
be better interpreted if more contextual data about the urban en-
vironments were available.

5. Discussions

The case study demonstrated the efficacy of the proposed metrics.
The metrics RTD and AP were successfully applied to the quantitative
assessment of human mobility perturbation during two EWEs in
Nanjing, and yielded reasonable assessment results. More importantly,
these metrics, which are calculated based on displacements traveled by
all individuals in questions, are physically meaningful and can be acted
upon in reality. Their application in the case study also proved that the
metrics are easily computable based on human trajectories, and that the
normalized assessment results can be used for benchmarking between
different scenarios. This suggests that the metrics can fulfill the

aforementioned objectives of this study, which is to measure both the
instantaneous perturbation at any given moment during an EWE, and
the accumulated perturbation over the entire timespan of the EWE,
with physically meaningful, computable and comparable metrics. By
achieving these objectives, this study advances the existing knowledge
about human mobility during EWE in several ways. First, while existing
literature thus far has mostly focused on descriptive observations of the
mobility perturbation, this study develops effective metrics for quan-
tifying the impact of EWEs, which notably enables future exploratory
research into this problem, and supports the development of measures,
such as improving emergency service accessibility (Yin et al., 2017), to
mitigate the adverse impact. Second, this study considers both in-
stantaneous and accumulated impacts of the EWEs. By doing so, it
views the perturbation as a dynamic process whose patterns and overall
impact can be measured. This highlights a comprehensive angle to
explore the characteristics of human mobility perturbation, which can
provide a full account of the deviation between human mobility during
EWE and its normal state in a city.

Taxi and bus trajectories were used to assess the perturbation in the
case study. Admittedly, these trajectories were not perfect representa-
tion of the mobility of the entire population in Nanjing. However, they
were reasonably representative for several reasons. First, public trans-
port trajectories, especially taxi trajectories, have been widely used to
study urban human mobility in prior research (Peng, Jin, Wong, Shi, &
Lio, 2012; Tang et al., 2015; Wang, Yang et al., 2017; Yao & Lin, 2016;).
The human mobility patterns extracted from taxi trajectories were also
found to be similar to those extracted from other types of data, such as
private vehicles and mobile phones (Wang, Pan, Yuan, Zhang, & Liu,
2015). Second, people in Nanjing rely heavily on public transport for
their mobility. They completed over two billion trips using public
transport in 2017, among which bus- and taxi-based trips accounted for
43.16% and 9.49%, respectively (Nanjing Municipal Bureau of
Statistics, 2018). Metro, which accounted for another 47.05% of the
trips, was much less sensitive than buses or taxies to the impact of
EWEs. Therefore, most of the perturbation was observed in bus and taxi
trajectories. Lastly, it is noteworthy that, although several transport
modes, such as metro, private cars and walking, were not included in
the case study, trajectories associated with these transport modes could
also be analyzed with the metrics used in this study, should the tra-
jectory data be made available.

There are several limitations in this case study that need to be noted,
including that the trajectories were analyzed at the vehicle level rather
than the passenger level, due to challenges in obtaining the trajectory
data of individual passengers, and that the results were only inclusive of

Table 4
Difference of TD values of bus trajectories among five weeks near snowstorm.

Dec 4-10, 2017 Dec 11-17, 2017 Dec 18-24, 2017 Jan 8-
14, 2018

Jan 15-21, 2018

Dec 4-10, 2017 —
Dec 11-17, 2017 0.173% —
Dec 18-24, 2017 0.149% 0.151% —
Jan 8-14, 2018 0.262% 0.255% 0.228% —
Jan 15-21, 2018 0.305% 0.289% 0.272% 0.124% —

Table 5
Difference of TD values of taxi trajectories among five weeks near rainstorm.

May 5-9, 2017 May 19-23, 2017 May 26-30, 2017 Jun 16-
20, 2017

Jun 23-27, 2017

May 5-9, 2017 —
May 19-23, 2017 0.208% —
May 26-30, 2017 0.182% 0.150% —
Jun 16-20, 2017 0.231% 0.177% 0.158% —
Jun 23-27, 2017 0.247% 0.171% 0.153% 0.171% —
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transport modes of buses and taxis. Future research could further look
into mobility perturbation at higher granularity and from more diverse
transport modes, examine underlying impact factors of the perturba-
tion, and develop approaches for predicting and intervening the per-
turbations during EWEs. In addition, future research should also look
into certain types of non-extreme events, such as nuisance flooding
(Moftakhari, Aghakouchak, Sanders, Allaire, & Matthew, 2018), that
can cause minor but frequent and widespread perturbation to urban
human mobility.

6. Conclusions

This paper reports a case study that aimed to investigate the human
mobility perturbation in urban regions during EWEs. The findings

indicated that urban population had certain level of resistance to EWEs
and was able to absorb their initial impacts. The human mobility pat-
tern would begin to restore in the course of the event, and may fully
restore to its normal state before the event completely ends. The find-
ings also indicated that the snowstorm caused more significant, oscil-
lating and lasting perturbation to human mobility in Nanjing than the
rainstorm. The perturbation was more significant in subareas of the city
that were relatively less developed and likely less swift in mobilizing
resources for disaster impact mitigation.

The findings from the case study have important practical im-
plications for cities. By understanding the magnitude of EWE-induced
perturbation to urban human mobility, and the temporal and geo-
graphical distribution patterns of the perturbation, decision makers in
cities can take proper measures to mitigate these impacts. Examples of

Table 6
Summary of case study results.

Rainstorm Snowstorm

Bus trajectories Taxi trajectories Bus trajectories

Beginning of EWE (t ‘0 ) 23:00, Jun 09, 2017 23:00, Jun 09, 2017 19:00, Jan 24, 2018
Beginning of mobility perturbation (t0) 7:00, Jun 10, 2017 00:00, Jun 10, 2017 5:00, Jan 25, 2018
End of EWE (t ’1 ) 7:00, Jun 11, 2017 7:00, Jun 11, 2017 13:00, Jan 28, 2018
End of mobility perturbation (t1) 23:00, Jun 10, 2017 3:00, Jun 11, 2017 20:00, Jan 31, 2018
The lowest RTD value 83.59% 79.21% 27.65%
AP value 0.111 0.145 0.210

Fig. 7. RTD curve based on bus trajectories during the rainstorm event.

Fig. 8. RTD curve based on buses trajectories during the snowstorm event.
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such measures include pre-event evacuation of the most vulnerable
population, and resource mobilization to support the recovery of the
most impacted regions. Moreover, cities that have different situations
or are faced with distinct threats of EWEs can utilize the metrics in-
troduced in this study to conduct their own assessment, which would
lay the basis for more informed and effective policies and measures to
improve the adaptive capacities of cities to withstand EWE-induced

impacts in the future.
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